今回はヒマなので
なーんか面白いことないかーとか
思っていましたら

東の方に
有名な大学が有るらしいんですよ。


東京大学って知ってます?

自分は行ったことないんで
よく知らないんですけど
有名大学みたいなので
数学の問題を解いてみることにしました。

解説動画はこちら



2003年の東大の入試問題より
 
円周率が 3.05 より大きいことを証明せよ。


さて
どう解きましょうかねー

とりあえず
円周の長さ > 内接X角形の外周

になるはずなので
この内接する多角形の外周を求めて
それが3.05よりも大きければ

総じて
円周率> 3.05 
となるのではないかと思います。

まずは円を描いてみましょう。

Pythonのライブラリを用いて
円を描いてみます。

# ライブラリの読み込み
import numpy as np
import matplotlib.pyplot as plt
% matplotlib inline


描画用のライブラリとして
matplotlibを読み込んでおきます。

# 半径5の円を描く
plt.figure(figsize=(2,2),dpi=300)
r = 5
x = [np.sin(np.radians(_x))*r for _x in np.linspace(-180,180,361)]
y = [np.cos(np.radians(_y))*r for _y in np.linspace(-180,180,361)]
plt.plot(x,y)

plt.xticks([i for i in range(-r,r+1)])
plt.yticks([i for i in range(-r,r+1)])
plt.axes().set_aspect('equal','datalim')
plt.show()
en1
円を描くにはx,y座標が必要ですが
その点を求めるのにnumpyを使います。

numpy.linspaceで等間隔の配列が作成できます。

あとはx,y座標の点を求めるのに
numpy.sin , numpy.cos を使います。
sin , cos に渡せるのはradianでないといけないので
一旦numpy.radiansで変換します。

これで円を描くことができます。


次にこの円に内接する多角形を描いてみましょう。
今回は12角形を描くこととします。

わかりやすくするために
三角形の辺の長さが3:4:5になるという法則を用いて
座標を決めていきます。

一番長い5の辺は円に接する先端ですね。
あとはx,yの座標は3か4になります。

一番上をx=0,y=5として座標点をプロットしてあげます。
# 内接する12角形を描画
plt.figure(figsize=(2,2),dpi=300)
r = 5
x = [np.sin(np.radians(_x))*r for _x in np.linspace(-180,180,361)]
y = [np.cos(np.radians(_y))*r for _y in np.linspace(-180,180,361)]
plt.plot(x,y)

x2 = [0,3,4,5,4,3,0,-3,-4,-5,-4,-3,0]
y2 = [5,4,3,0,-3,-4,-5,-4,-3,0,3,4,5]
plt.plot(x2,y2)

plt.xticks([i for i in range(-r,r+1)])
plt.yticks([i for i in range(-r,r+1)])
plt.axes().set_aspect('equal','datalim')
plt.show()
en2
はいこれで円に接する12角形が描けました。

あとはこの辺の長さを求めて
あげれば良いということになります。

辺の長さを求めるにはどうすれば良いでしょうか?

これはnumpyを使って
ユークリッド距離を求めることで
辺の長さを計算することができます。

numpy.linalg.norm(座標a - 座標b)

これで2点のユークリッド距離を求めることができます。

12角形のうち
全部を求める必要はなく

右上部分の4点を用いて
3辺の長さを計算してみましょう。

x,y座標はそれぞれ
0,5
3,4
4,3
5,0
となるので
そのうち2点を使って計算します。
l = np.array([[0,5],[3,4],[4,3],[5,0]])
c1 = np.linalg.norm(l[0]-l[1])
c2 = np.linalg.norm(l[1]-l[2])
c3 = np.linalg.norm(l[2]-l[3])
ans1 = 4 *(c1+c2+c3)
print(ans1)

30.9550755308

さてこれで多角形の辺の長さが計算できました。

問題文は3.05より大きいことを証明せよなので
比率を合わせます。

この円は半径5の円なので直径は10です。
なので10倍します。
30.5


10倍した30.5よりも
12角形の外周は30.95のため大きくなり

必然的にそれよりも円周は大きいので

円周率>3.05

になるはずです。

さて
描画などについては
Pythonのライブラリを用いると簡単に
描くことができ
また座標間の距離なども
簡単に計算することができます。

数学の問題では
このnumpyとmatplotlibライブラリを使って
いろいろ問題に応用することができます。

数学的な可視化や
その計算については
numpyやmatplotlibライブラリを
用いることが多いです。

単純な計算については
通常のPythonプログラムだけでも
行うことができます。

問題を読み間違わなければ
このくらいの計算は
プログラミングで簡単に行うことができるので

プログラミングを覚えていない方
これから覚えたい方は
ぜひPythonを覚えてみてください。

Pythonについては無料の動画講座を用意しています。
乙py式5時間で学ぶプログラミング基礎(python編)

興味のある方はぜひこちらをご参照くださいませ。

それでは。